

KEY CHALLENGES

Current CAR-T cell therapies face logistical, manufacturing and clinical integration challenges

Complex and long manufacturing process (>14 days), with a long vein-to-vein time (>27 days).¹⁻²

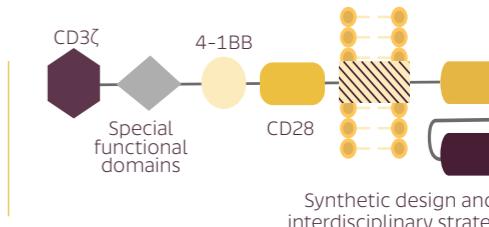
Treatment delays and worsening of patient condition necessitating bridging therapy.

High relapse rates (around 50%) and low persistence due to prolonged T-cell expansion and preferential proliferation of differentiated T-cells rather than more persistent naïve and stem cell memory T cells, as well as antigen escape (loss of expression on cancer cells).³

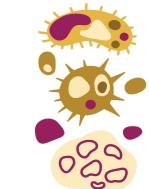
High risk for toxicity: CRS: any grade 42–93%; grade 3 or worse 2–20% and ICANS: any grade 21–64%; grade 3 or worse 10–28%.⁴⁻⁶

NEXT-GENERATION CAR-T CELL THERAPY STRATEGIES

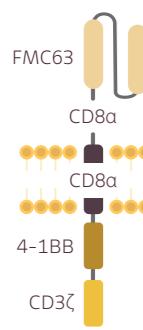
Improved manufacturing, efficacy, and durability

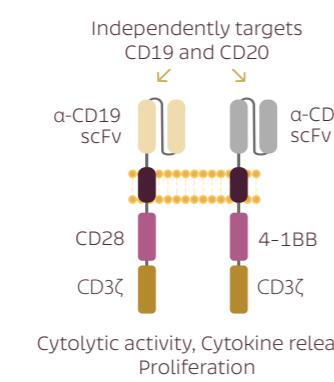

Rapid manufacturing platforms (<2 days) that enhance in-vivo T-cell expansion and preserve T-cell quality for greater persistence, and longer time to side effects.⁵

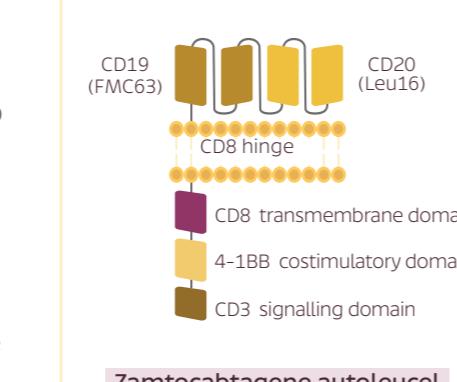
Decentralized manufacturing and automated manufacturing using a fresh, more viable product, to reduce vein-to-vein time (approximately 7 days and 13–15 days, respectively).⁷

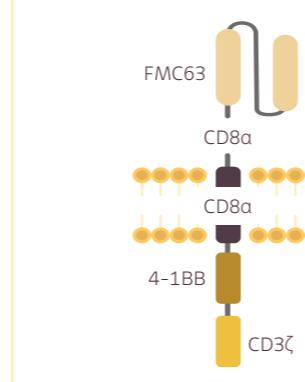

Dual antigen targeting to overcome antigen loss and improve T-cell persistence and efficacy.

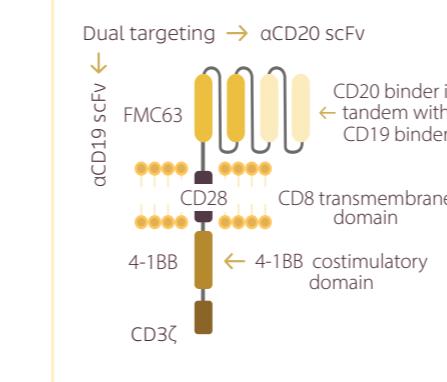
Costimulatory domains to boost T-cell performance.

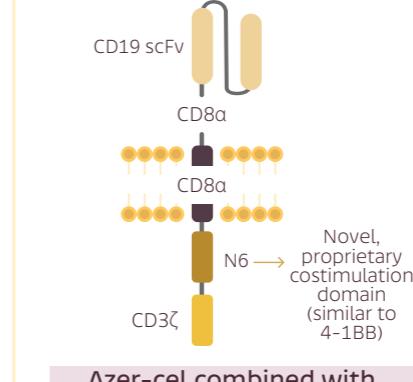

Allogeneic CAR-T cells, using donor cells for a quicker, off-the-shelf product

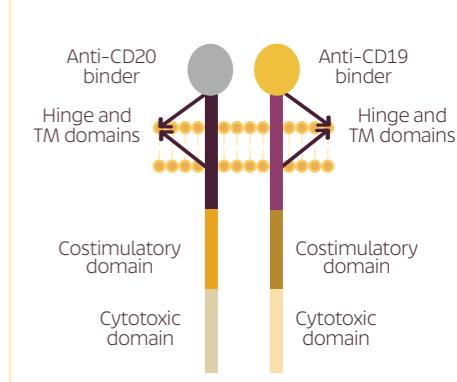

Biocompatible materials
Nanomaterials
Oncolytic virus
Bacterium


2025 CLINICAL DATA


Rapcabtagene autoleucel (phase 2)


KITE-753 (phase 1)¹⁰


Zamtocabtagene autoleucel
(phase 2; DALY 2-EU study)⁸


GLPG5101 (phase 1/2; ATALANTA-1)¹¹

Prizlo-cel (JNJ-90014496; phase 1b)¹²

Azer-cel combined with
interleukin (IL)-2 (phase 1/1b)¹³

Lucar-G39D (phase 1)¹⁴

CD-19-directed CAR-T therapy using a rapid manufacturing platform (T-Charge™)

Independent CD19/CD20-directed CAR-T therapy with dual costimulation of CD28 and 4-1BB, produced using a rapid manufacturing platform

Tandem CD19/CD20-directed CAR-T therapy with dual costimulation of CD28 and 4-1BB, produced using a fully automated system (CliniMACS Prodigy®) and administered as a fresh product

CD-19-directed CAR-T therapy, using a closed, fully automated decentralized manufacturing system and administered as a fresh product

Tandem CD19/CD20-directed CAR-T therapy with dual costimulation of CD28 and 4-1BB

Allogeneic CD19-directed CAR-T therapy combined with subcutaneous IL-2 for exogenous armoring

Allogeneic, independent CD19/CD20-directed gamma delta CAR-T cell therapy with dual costimulation

Setting: R/R DLBCL⁷

Setting: R/R LBCL

Setting: R/R LBCL versus R-GemOX

Setting: R/R DLBCL

Setting: R/R LBCL

Setting: R/R B-cell non-Hodgkin Lymphoma

Dose: 12.5×10^6 CAR-T cells per kg

Dose: 0.2×10^6 CAR-T cells per kg

Dose: 2.5×10^6 CAR-T cells per kg

Dose: 50×10^6 , 110×10^6 , 250×10^6 CAR-T cells

Dose: 2.0×10^6 CAR-T cells per kg, 150×10^6 CAR-T cells, 75×10^6 CAR-T cells

Dose: 30×10^6 , 100×10^6 , 200×10^6 , 400×10^6 , 600×10^6 , 800×10^6 CAR-T cells

Response CR: 65%; ORR: 88%

Response CR: 70%; ORR: 80%

Response CR: 54%; ORR: 72%

Response CR: 54%; ORR: 69%

Response CR: 75%; ORR: 91%

Response CR: 44%; ORR: 81%

Toxicity	CRS	ICANS
Any grade	44%	8%
Grade ≥ 3	6%	5%
Median time to onset	8 days	13 days
Median duration	4 days	19 days

Toxicity	CRS	ICANS
Any grade	53%	11%
Grade ≥ 3	0%	0%
Median time to onset	6 days	10 days
Median duration	5 days	2 days

Toxicity	CRS	ICANS
Any grade	78%	11%
Grade ≥ 3	5%	1%
Median time to onset	2 days	10 days
Median duration	6 days	5 days

Toxicity	CRS	ICANS
Any grade	43%	20%
Grade ≥ 3	2%	2%
Median time to onset	7 days	12 days
Median duration	3 days	2 days

Toxicity	CRS	ICANS
Any grade	80%	16%
Grade ≥ 3	4%	8%
Median time to onset	3 days	3 days
Median duration	5 days	17 days

Toxicity	CRS	ICANS
Any grade	72%	17%
Grade ≥ 3	0%	11%
Median time to onset	3 days	5 days
Median duration	2 days	1 day

Setting: First-line, high-risk LBCL⁹

Dose: 12.5×10^6 CAR-T cells per kg

Response CR: 74%; ORR: 89%

Toxicity	CRS	ICANS
Any grade	49%	8%
Grade ≥ 3	0%	2%
Median time to onset	11 days	15 days
Median duration	6 days	17 days

Toxicity	CRS	ICANS
Any grade	56%	0%
Grade ≥ 3	13%	0%
Median time to onset	3 days	
Median duration	5 days	

ABBREVIATIONS

REFERENCES

1. Shah M, Krull A, Odonnell L, de Lima M, Bezerra E. Promises and challenges of a decentralized CAR-T cell manufacturing model. *Front Immunol*. 2023 Sep 5:123853.

2. Locke FL, Siddiqi T, Jacobson CA, et al. Impact of vein-to-vein time in patients with R/R DLBCL. *ASCO Annual Meeting*. 2023;41(15):20004.

3. Bock FL, Collier CK, Poirier S, et al. Outcome correlates of advanced CD19-targeted CAR T cells for large B-cell lymphoma. *Nat Rev Clin Oncol*. 2025 Apr; 22(4):241-261.

4. Locke FL, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. *N Engl J Med*. 2022; 386: 640-654.

5. Schuster SJ, Bishop MR, Tam CS, et al. Trisagenicleucel in adult relapsed or refractory diffuse large B-cell lymphoma. *N Engl J Med*. 2019; 380: 45-56.

6. Abramson JS, Palomba ML, Gordon LI, et al. Lisocab